SiRNA Berbasis Aptamer-PLEGP1800 Enkapsulasi Chitosan : Literature Review Penatalaksanaan Triple Negative Breast Cancer
PDF

How to Cite

RemithaN. P. S. I., RompisA. Y., YaniM. V. W., WigunaI. G. W. W., SadvikaI. G. A. S., & PutraI. G. M. A. D. (2020). SiRNA Berbasis Aptamer-PLEGP1800 Enkapsulasi Chitosan : Literature Review Penatalaksanaan Triple Negative Breast Cancer . Journal of Health Science and Prevention, 4(2), 68-78. https://doi.org/10.29080/jhsp.v4i2.369

Abstract

Triple Negative Breast Cancer  (TNBC) memiliki karakteristik yang berbeda dengan jenis kanker payudara pada umumnya karena bersifat agresif, resisten terhadap pengobatan, proliferasi yang tinggi, dan angka harapan hidup yang rendah. Pemanfaatan siRNA spesifik silencing gen mutan p53 dan VEGF sebagai penatalaksanaan TNBC merupakan metode yang menjanjikan. Penulisan literature review ini bertujuan untuk mengkaji mekanisme dan efek klinis siRNA-Aptamer-PLEGP1800-Chitosan sebagai terapi TNBC berbasis teknologi nano. Metode yang digunakan dalam penulisan literature review ini adalah kajian pustaka dengan data menggunakan search engine seperti NCBI, Pubmed, dan Google Scholar sehingga ditemukan 28 jurnal yang sesuai dengan kriteria inklusi dan eksklusi. SiRNA akan dikonjugasi dengan aptamer dan PLEGP1800. SiRNA-Aptamer-PLEGP1800 juga akan dienkapsulasi dengan chitosan untuk meningkatkan bioavailabilitas dan melindungi senyawa di dalamnya dari degradasi serum. Efek klinis beberapa penelitian menunjukkan bahwa Silencing mut-p53 dan TNF secara bersamaan menyebabkan hilangnya viabilitas sel, serta Pemberian siRNA/PLEGP1800 nanocomplex menurunkan ekspresi gen VEGF. Hal tersebut menunjukkan bahwa siRNA-Aptamer-PLEGP1800-Chitosan memiliki prospek yang baik sebagai penatalaksanaan TNBC.

https://doi.org/10.29080/jhsp.v4i2.369
PDF

References

International Agency for Research on Cancer. Cancer Today (powered by GLOBOCAN 2018) [Internet]. 2018. Available from: https://publications.iarc.fr/Databases/Iarc-Cancerbases/Cancer-Today-Powered-By-GLOBOCAN-2018--2018

Anders CK, Carey LA. Biology, Metastatic Patterns, and Treatment of Patients With Triple-Negative Breast Cancer. Clin Breast Cancer. 2013;9(suppl 2):S73–8.

Garrido-Castro AC, Lin NU, Polyak K. Insights Into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discov. 2019;9(2):176–98.

Kaplan HG, Malmgren JA, Atwood M. T1N0 Triple Negative Breast Cancer : Risk of Recurrence and Adjuvant Chemotherapy. Breast J. 2009;15(5):454–60.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2018;68(6):384–424.

Kementerian Kesehatan Republik Indonesia. Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/414/2018 Tentang Pedoman Nasional Pelayanan Kedokteran Tata Laksana Kanker Payudara [Internet]. 2018 [cited 2019 Jul 30]. Available from: http://kanker.kemkes.go.id/guidelines/PNPKPayudara.pdf

Hadi N, Soltanipour S, Talei A. Impact of Modified Radical Mastectomy on Health-Related Quality of Life in Women With Early Stage Breast Cancer. Arch Iran Med. 2012;15(8):504–7.

Turner NC, Ro J, Andre F, Loi S, Verma S, H. I. Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2015;373:209–19.

Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Harashima H. Gene Silencing via RNAi and siRNA Quantification in Tumor Tissue Using MEND, a Liposomal siRNA Delivery System. Molecular Therapy. 2013;21(6):1195–203.

Andreuzzi E, Colladel R, Pellicani R, Tarticchio G. The Angiostatic Molecule Multimerin 2 is Processed by MMP-9 to Allow Sprouting Angiogenesis. Matrix Biol. 2017;64:40–53.

Colladel R, Pellicani R, Andreuzzi E, Paulitti A, Todaro F, Colombatti A. MULTIMERIN2 Binds VEGF-A Primarily Via the Carbohydrate Chains Exerting an Angiostatic Function and Impairing Tumor Growth. Oncotarget. 2016;7(2):2022–37.

Di Minin G, A B, M DF, C G, S N, S B. Mutant p53 Reprograms TNF Signaling in Cancer Cells Through Interaction With The Tumor Suppressor DAB2IP. Mol Cell. 2014;56(5):617–29.

Malik A. RNA Therapeutic, Pendekatan Baru dalam Terapi Gen. Majalah Ilmu Kefarmasian. 2005;2(2):51–61.

Wu X, Shaikh AB, Yu Y, Li Y, Ni S, Lu A, et al. Potential Diagnostic and Therapeutic Applications of Oligonucleotide Aptamers in Breast cancer. International Journal of Molecular Sciences. 2017;18(9):1851.

Lakhin AV, Tarantul VZ, Gening LV. Aptamers: Problems, Solutions and Prospects. Acta naturae. 2013;5(4):34–43.

Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U. Multistability in Platelets and Their Response to Gold Nanoparticles. Nanomed: Nanotechnol Biol Med. 2011;7(4):376–84.

Guo Q, Guo Q, Yuan J, Zeng J. Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:127–132.

Braicu O, Pileczki V, Braicu C, Achimas-Cadariu P, Irimie A, Berindan-Neagoe I. p53 siRNA - a therapeutic tool with significant implication in the modulation of apoptosis and angiogenic pathways. Clujul Med. 2015;88(3):333–7.

Verma P, Thakur AS, Deshmukh K, Jha DAK, Verma S. Routes of Drug Administration. International Journal of Pharmaceutical Studies and Research. 2010;1(1):54–9.

Liang Z, Gong T, Sun X, Tang J. Chitosan Oligomers as Drug Carriers for Renal Delivery of Zidovudine. Carbohydr Polym. 2012;87(3):2284–90.

Motiei M, Kashanian S, Lucia LA, Khazaei M. Intrinsic Parameters for The Synthesis and Tuned Properties of Amphiphilic Chitosan Drug Delivery Nanocarriers. J Control Release. 2017;260:213–25.

Hardy A, Seguin C, Brion A, Lavalle P, Schaaf P, Fournel S, et al. beta-Cyclodextrin-Functionalized Chitosan/Alginate Compact Polyelectrolyte Complexes (CoPECs) as Functional Biomaterials with Anti-Inflammatory Properties. ACS Appl Mater Interfaces. 2018;10(35):29347–56.

Pileczki V, Pop L, Braicu C, Budisan L, Bolba Morar G, Monroig-Bosque C, et al. Double Gene siRNA Knockdown of Mutant p53 and TNF Induces Apoptosis in Triple-Negative Breast Cancer Cells. Onco Targets and Therapy. 2016;9:6921–33.

Zhao Z, Li Y, Shukla R, Liu H, Jain A, Barve A, et al. Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics. 2019;9(15):4508–24.

Berindan-Neagoe I, Braicu C, Irimie A. Combining The Chemotherapeutic Effects of Epigallocatechin 3-Gallate With siRNA-Mediated p53 Knock-Down Results in Synergic Pro-Apoptotic Effects. Int J Nanomedicine. 2012;7:6035–6047.

Song Y, Tang C, Yin C. Combination Antitumor Immunotherapy With VEGF and PIGF siRNA Via Systemic Delivery of Multi-Functionalized Nanoparticles to Tumor-Associated Macrophages and Breast Cancer Cells. Biomaterials. 2018;185:117–132.

Jafari R, Majidi Zolbanin N, Majidi J. Anti-Mucin1 Aptamer-Conjugated Chitosan Nanoparticles for Targeted Co-Delivery of Docetaxel and IGF-1R siRNA to SKBR3 Metastatic Breast Cancer Cells. Iran Biomed J. 2019;23(1):21–33.

Yu S, Bi X, Yang L. Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast Cancer Effects In Vivo. J Biomed Nanotechnol. 2019;15(6).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.